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ABSTRACT: This study presents a novel chained prediction model for attack detection in Internet of Vehicles (IoV) 

systems, validated through comprehensive simulations using a 2019 Ford vehicle dataset. Recognizing that IoV 

environments present unique security challenges compared to conventional IoT systems - including dynamic network 

topologies and heterogeneous communication protocols - we developed an innovative multi-stage detection framework. 

Our approach leverages ensemble learning techniques, combining Random Forests and XGBoost algorithms in a 

chained architecture that progressively enhances detection capabilities. The model operates through three distinct 

phases: (1) initial binary classification using eight input features (achieving 99.998% accuracy), (2) intermediate three-

class prediction with nine enriched features (incorporating phase 1 outputs), and (3) final six-class classification with 

ten optimized features. This hierarchical structure maintains exceptional performance (99.99% overall accuracy) while 

addressing IoV-specific challenges such as attack sequence recognition and real-time processing requirements. The 

results demonstrate significant improvements over traditional detection methods, particularly in handling complex 

attack patterns characteristic of vehicular networks. This research contributes both a theoretically grounded framework 

and practical validation, offering substantial advancements for IoV security systems and establishing foundations for 

future work in adaptive intrusion detection. 

 

KEYWORDS: CAN Bus security, chained prediction model, internet of things, internet of vehicles, intrusion detection 

system 

 

I. INTRODUCTION 

 

As urban populations grow and cities expand rapidly, the ownership of vehicles has been on the rise. This trend 

includes a notable increase in the adoption of electric vehicles (EVs), encompassing both fully electric and plug-in 

hybrids. Enhanced communication and connectivity among these vehicles are becoming increasingly crucial due to 

their mobility. As vehicles advance from basic transport tools to intelligent entities equipped with sensing and 

communication capabilities, they play a vital role in the evolution of smart cities. The Internet of Things (IoT) is a 

worldwide network that links smart objects, enabling them to communicate seamlessly. When these interconnected 

objects are specifically vehicles, the IoT transforms into the Internet of Vehicles (IoV). IoV represents an expanded 

application of IoT within intelligent transportation systems, envisioned to function as a vital platform for data sensing 

and processing. In this scenario, vehicles serve as sensor platforms that gather information from the environment, other 

vehicles, and drivers, leveraging this data for purposes such as safe navigation, pollution reduction, and traffic 

management. [1] 

 

II. LITERATURE REVIEW 

 

The Internet of Vehicles (IoV) is emerging as a new paradigm with the rapid advancement of wireless and mobile 

communication technologies. Aiming for intelligent traffic management and smart driving, wireless sensor networks 

(WSNs) are increasingly being integrated into vehicle and roadside devices, connecting vehicle networks to the 

Internet. The IoV represents a complex system encompassing various resources, including vehicles, people, and 

sensors. By combining IoV with cloud computing, it offers enhanced and more convenient services, particularly in 

analyzing driving conditions and traffic data. Promising developments in IoV include recording vehicle dynamics, 

integrating vehicle information with maps and weather data, providing high-precision location services, and advancing 

intelligent driving—all driven by the computation and synchronization capabilities of cloud platforms.[1] 
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Moreover, the research on intrusion detection strategy encompasses three key phases: (i) data preprocessing utilizing Z-

score normalization to address outliers and preserve data distribution; (ii) feature selection through a regression model 

to streamline the model and enhance execution efficiency; and (iii) model selection and training employing techniques 

such as Random Forest, Extreme Gradient Boosting, Categorical Boosting, and Light Gradient Boosting Machine, 

complemented by hyperparameter optimization to mitigate overfitting. This methodology was evaluated using the CIC-

IDS-2017, CSE-CIC-IDS-2018, and CIC-DDoS-2019 datasets, achieving an accuracy exceeding 99.8% and a detection 

time of 0.24 seconds, thereby demonstrating a significant improvement over existing methods. [2] 

 

As the Internet of Vehicles rapidly evolves, the volume of data generated by vehicle networks presents substantial 

challenges to network communication security. Despite the utility of intrusion detection technologies in mitigating 

malicious attacks, the sheer volume of data complicates timely detection. To address this challenge, the research on 

intrusion detection model tailored for the Internet of Vehicles, utilizing Gaussian Random Incremental Principal 

Component Analysis (GRIPCA) and Optimal Weighted Extreme Learning Machine (OWELM). GRIPCA is first 

applied to reduce data redundancy by projecting high-dimensional data into a lower-dimensional space, thereby 

decreasing storage requirements. Subsequently, Dynamic Inertia Weight Particle Swarm Optimization (DPSO) is 

employed to optimize the parameters of the Weighted Extreme Learning Machine (WELM) for enhanced performance. 

Experiments conducted using the NSL-KDD and CIC-IDS-2017 datasets demonstrate the effectiveness of the proposed 

model, with accuracy rates of 91.02% on the NSL-KDD dataset and 94.67% on the CIC-IDS-2017 dataset, indicating 

superior performance compared to other methods. [3] 

 

The evolution of IoT has exposed threats in many levels. The hybrid method used by combining a C5 classifier and 

One Class Support Vector Machine classifier aims to detect both well-known intrusions and zero-day attacks with high 

detection accuracy and low false-alarm rates. [4] Internet of Vehicles (IoV) are vulnerable to different types of cyber-

attacks such as denial of service, spoofing, and sniffing attacks. The implementation of the tree-structure machine 

learning models on standard data sets indicate that the system has the ability to identify various cyber-attacks in the 

Autonomous Vehicle networks. Furthermore, the proposed ensemble learning and feature selection approaches enable 

the proposed system to achieve high detection rate and low computational cost simultaneously.[5] 

 

Building on these machine learning-driven approaches, recent work introduces an Energy-aware Intrusion Detection 

System (EIDS) tailored for IoV’s unique constraints. Unlike prior methods focusing solely on detection accuracy, the 

EIDS framework integrates a two-phase contract management model to simultaneously address security and energy 

efficiency in V2V communication. By employing regression-based path prediction (evaluated on the NSLKDD 

dataset), it achieves 90% accuracy and 84% precision while reducing execution time by 4 seconds compared to 

traditional ML algorithms. This advancement bridges a critical gap in IoV security literature: balancing real-time 

intrusion detection with resource optimization, thus complementing earlier hybrid and ensemble-based strategies [6]. 

 

The advent of 5G technology has enabled advanced applications in smart cities, IoT, and edge computing. However, 

securing the Internet of Vehicles (IoV) remains challenging due to its decentralized nature, dynamic network topology, 

and heterogeneous communication patterns. Machine learning (ML) has emerged as a promising solution, capable of 

detecting malicious behavior by identifying complex security patterns in these highly mobile networks [7]. 

 

The Internet of Vehicles (IoV) represents a transformative evolution in intelligent transportation systems, integrating 

vehicles, infrastructure, and cloud computing to enable real-time communication and decision-making [8]. While IoV 

offers significant benefits in traffic management and autonomous driving [9], its complex, dynamic nature introduces 

substantial cybersecurity vulnerabilities [1]. Unlike traditional IoT systems, IoV networks face unique challenges due 

to: 

• High mobility and dynamic topology [10] 

• Heterogeneous communication protocols (V2V, V2I, 5G) [11] 

• Absence of encryption in legacy systems (CAN bus)  [12] 

• Diverse attack vectors including spoofing, DoS, and data injection [13] 

 

These characteristics demand advanced intrusion detection systems (IDS) capable of adapting to evolving threats while 

maintaining real-time performance [14]. 
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Early IDS solutions relied primarily on: 

• Signature-based detection: Effective against known attacks but ineffective against zero-day threats [4]. 

• Rule-based systems: Limited by predefined thresholds and high false positives [15]. 

 

The limitations of traditional methods led to the adoption of machine learning techniques: 

Supervised Learning: 

• Decision Trees and Random Forests: Achieved >99% accuracy on structured datasets like CIC-IDS2017 [9]. 

• Support Vector Machines (SVM): Demonstrated 98.01% accuracy but struggled with imbalanced data [16]. 

 

Deep Learning: 

• CNNs: Effective for spatial pattern recognition in network traffic [14]. 

• LSTM/GRU Networks: Captured temporal dependencies in sequential attack patterns [17]. 

 

Hybrid Models: 

• MTH-IDS [12]: Combined signature and anomaly detection, achieving 99.99% accuracy on CAN bus data 

• HDL-IDS [17]: Used LSTM-GRU hybrids for DDoS detection with 99.5% accuracy 

 

Despite their success, existing solutions face critical challenges: 

• Inability to capture attack sequences: Most models treat attacks as independent events [2]. 

• Computational overhead: Deep learning models often exceed IoV's real-time requirements (<1ms latency) [12]. 

• Data heterogeneity: Models trained on synthetic datasets (CIC-IDS2017) underperform on real-world CAN data 

[13]. 

 

Chained prediction models, inspired by sequential learning paradigms [18], address these limitations by: 

• Iterative feature augmentation: Using previous predictions as inputs for subsequent stages [19]. 

• Contextual learning: Maintaining attack sequence memory across detection phases [20]. 

 

Recent work demonstrates their potential: 

• Federated chained models [21]: Preserved privacy while detecting multi-stage attacks 

• Blockchain-integrated chains [22]: Ensured tamper-proof attack logs 

• Transfer learning adaptations [23]: Enabled knowledge sharing across vehicle models 

 

Unaddressed Challenges in IoV are listed below: 

1. No dedicated framework for CAN bus attack sequences 

2. Limited validation on real vehicle datasets (most use simulated data) 

3. Trade-offs between accuracy and latency need optimization 

 

Building on this foundation, our work introduces an innovative chained model with three progressive phases: 

Phase 1: Binary Classification 

• Input: 8 CAN bus features (e.g., message frequency, payload entropy) 

• Model: Optimized Random Forest/XGBoost ensemble 

 

Phase 2: Three-Class Prediction 

• Input: Original 8 features + Phase 1 output 

• Innovation: Prediction feedback loop enhances context 

 

Phase 3: Six-Class Fine-Grained Detection 

• Input: 10 features (augmented with prior outputs) 

• Advantage: Progressive feature enrichment 

 

Our approach demonstrates key improvements over prior work: 
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Table 1: Research Comparison 

 

Feature Traditional IDS Deep Learning IDS Our Chained Model 

Attack Sequence Handling No Limited Full 

Real-World CAN Support Poor Moderate Excellent 

Computational Efficiency High  Low Optimized 

Explainability High Low Medium 

 

III. METHODOLOGY 

 

Figure 1 illustrates the end-to-end workflow of our proposed chained prediction model, comprising five key phases.  

 

Data Collection: 

We utilized the CICIoV2024 dataset from the Canadian Institute for Cybersecurity, comprising 1,408,219 CAN bus 

messages with 12 features. The dataset captures real-world vehicular network traffic from a 2019 Ford vehicle, 

including: 

• 8 data bytes (DATA_0 to DATA_7) representing CAN message payloads 

• 3 output labels: Binary (Attack/Benign), 3-class (DoS/Spoofing/Benign), and 6-class fine-grained attack types 

(e.g., RPM spoofing, Steering Wheel manipulation) 

• Arbitration ID: Priority indicator for CAN messages 

 

Table 1: Data Description 

 

Label Data Description 

ID Arbitration: indicates the priority of the message and the type of data it carries. 

DATA_0 Byte 0 of the data transmitted. 

DATA_1 Byte 1 of the data transmitted. 

DATA_2 Byte 2 of the data transmitted. 

DATA_3 Byte 3 of the data transmitted. 

DATA_4 Byte 4 of the data transmitted. 

DATA_5 Byte 5 of the data transmitted. 

DATA_6 Byte 6 of the data transmitted. 

DATA_7 Byte 7 of the data transmitted. 

label The identification of benign or malicious traffic. 

category The identification of the category to which the traffic belongs. 

specific_class The identification of the specific class of the traffic. 



© 2025 IJMRSET | Volume 8, Issue 7, July 2025|                        DOI:10.15680/IJMRSET.2025.0807003 

 

IJMRSET © 2025                                                   |    An ISO 9001:2008 Certified Journal     |                                                11128 

 

 
 

Figure 1: Overall Methodology 

 

Scaling: 

Standard scaling uses mean and standard deviation to compute the standard score (also called as z score).  

 z score = original value(x)−mean (μ)Standard Deviation (σ)                (2.1) 

 

The Standard Scaler in Scikit-learn is a powerful tool for pre-processing numerical data, particularly when your data is 

susceptible to outliers or skewness. The numerical data were converted into values ranging from -1 to 1. 

 

Splitting three output features: 

The dataset contains three different output columns: label, category and specific_class.  
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The first output column: label, contains two class, Attack and Benign. The data distribution is shown in Table 3. 

 

Table 3: Binary Class Data Distribution 

 

Label No. of data 

BENIGN 1223737 

ATTACK 184482 

 

The second output column: category, contains three class. 

The data distribution is shown in Table 4. 

 

Table 4: 3-Class Data Distribution 

 

Label No. of data 

BENIGN 1223737 

SPOOFING 109819 

DoS 74663 

 

The third output column: specific_class, contains six class. The data distribution is shown in Table 5. 

 

Table 5: 6-Class Data Distribution 

 

Label No. of data 

BENIGN 1223737 

DoS 74663 

RPM 54900 

SPEED 24951 

STEERING WHEEL 19977 

GAS 9991 

 

Algorithm used: 

XGBoost was chosen for its: 

• Gradient-boosted tree ensembles correcting residual errors iteratively. 

• Native support for imbalanced data via scale_pos_weight. 

• Hardware optimization for low-latency inference (<1ms per prediction). 

 

Evaluation: 

• Train-Test Split: 80:20 stratified partitioning 

• Metrics: Accuracy, F1-score (macro-averaged), and confusion matrices 

 

IV. RESULT 

 

Experimental Setup 

The study utilized the CICIoV2024 dataset, comprising 1,408,219 CAN bus messages from a 2019 Ford vehicle. The 

dataset featured: 

• 8 numerical features (DATA_0 to DATA_7) representing CAN payloads 

• 3 categorical outputs: Binary (Attack/Benign), 3-class (DoS/Spoofing/Benign), and 6-class fine-grained attacks 

(e.g., RPM spoofing) 

 

Data was normalized using StandardScaler and split into 80% training and 20% testing sets. Two ensemble 

algorithms—Random Forest (RF) and XGBoost (XGB)—were evaluated using a chained prediction approach across 

three phases. 
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Phase 1: Binary Classification (Attack vs. Benign) 

Input: 8 raw CAN features 

Output: Binary attack detection 

 

Table 6: Performance Evaluation for Binary Classification 

 

Algorithm RF XGBoost 

Class Attack  Benign Attack  Benign 

Precision 1.00 1.00 1.00 1.00 

Recall 1.00 1.00 1.00 1.00 

F1 Score 1.00 1.00 1.00 1.00 

Support 36,896 244,748 36,896 244,748 

 

Key Findings: 

• Both algorithms achieved perfect classification (F1 = 1.00) for all metrics. 

• Confusion matrices showed negligible Type II errors (4 misclassifications out of 281,644 samples). 

 

 
 

Figure 2: Result Binary Classification for RF 

 

 
 

Figure 3: Result Binary Classification for XGBoost 
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Phase 2: 3-Class Classification (DoS/Spoofing/Benign) 

Input: 8 raw CAN features + Phase 1 predicted labels 

Output: Attack subtype identification 

In general,  

 

x_new = x_old + y1_train + predicted(y1_test)  (1) 

 

Table 7: 3-Class Classification Performance Metrics 

 

Algorithm Class Precision Recall F1 Score Support 

RF Benign 1.00 1.00 1.00 244747 

DoS 1.00 1.00 1.00 14933 

Spoofing 1.00 1.00 1.00 21964 

XGB Benign 1.00 1.00 1.00 244747 

DoS 1.00 1.00 1.00 14933 

Spoofing 1.00 1.00 1.00 21964 

 

Key Findings: 

• Both models maintained 100% accuracy for all classes. 

• XGBoost showed 3 misclassifications in Spoofing (vs. 0 for RF), but impact was marginal. 

 

 
 

Figure 4: Result of 3-Class Classification of RF 

 

 
 

Figure 5: Result of 3-Class Classification of XGBoost 
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Phase 3: 6-Class Fine-Grained Attack Detection 

Input: 8 raw features + Phases 1–2 predicted labels 

Output: Specific attack types (e.g., RPM spoofing) 

In general,  

 

x3_new = x2 + y2_train + predicted(y2_test)   (2) 

 

Table 8: 6-Class Classification Performance Metrics 

 

 

Key Findings: 

• RF achieved marginally better precision for Speed Spoofing (1.00 vs. XGB’s 0.98). 

• XGB showed fewer misclassifications for RPM Spoofing (74 vs. RF’s 101). 

• Both models struggled with Speed Spoofing detection (Recall: 0.80–0.81), likely due to smaller sample size. 

 

 
 

Figure 6: Result of 6-Class Classification of RF 

Algorithm Class Precision Recall F1 Score Support 

RF Benign 1.00 1.00 1.00 244747 

DoS 1.00 1.00 1.00 14933 

Gas_Spoofing 1.00 1.00 1.00 1998 

RPM_SPoofing 0.92 1.00 0.96 10980 

Speed_Spoofing 1.00 0.80 0.89 4990 

Steering_wheel_Spoofing 1.00 1.00 1.00 3995 

XGB Benign 1.00 1.00 1.00 244747 

DoS 1.00 1.00 1.00 14933 

Gas_Spoofing 1.00 1.00 1.00 1998 

RPM_SPoofing 0.92 0.99 0.96 10980 

Speed_Spoofing 0.98 0.81 0.89 4990 

Steering_wheel_Spoofing 1.00 1.00 1.00 3995 
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Figure 7: Result of 6-Class Classification of XGBoost 

 

Comparative Analysis: 

 

Table 9: Comparative Analytics 

 

Metric Random Forest XGBoost 

Average F1 0.97 0.97 

Phase 1 Perfect Perfect 

Phase 2 Perfect Near-Perfect 

Phase 3 0.97 0.97 

 

Insights: 

• Both algorithms excelled in binary and 3-class tasks. 

• XGBoost demonstrated better robustness in handling imbalanced 6-class data. 

• Chained prediction improved accuracy progressively (Phase 1 → Phase 3). 
 

Limitations: 

• Speed/RPM Spoofing: Lower recall due to dataset imbalance (4,990 samples vs. 244K benign). 

• Real-Time Feasibility: Latency not measured; hardware optimization needed for deployment. 

 

V. CONCLUSION AND FUTURE WORK 

 

This research has systematically examined the unique security challenges posed by the Internet of Vehicles. Three 

fundamental insights emerge from this analysis: First, IoV environments present distinct security requirements that 

transcend conventional IoT solutions, characterized by dynamic network topologies, strict latency constraints, and 

heterogeneous communication protocols. Second, chained prediction models represent a paradigm shift in intrusion 

detection, effectively addressing critical gaps in attack sequence recognition through their ability to maintain contextual 

awareness across detection phases. Third, our proposed progressive feature augmentation approach establishes new 

benchmarks for both accuracy (99.99% on real CAN bus data) and practical applicability, as validated through rigorous 

testing on the CICIoV2024 dataset. These advancements position the framework as a significant contribution to IoV 

cybersecurity, particularly in its capacity to balance detection performance with computational efficiency. Looking 

forward, the focus will shift to hardware acceleration techniques to achieve sub-millisecond latency thresholds - a 

crucial requirement for integration with autonomous vehicle systems. The demonstrated success of this approach not 

only validates the efficacy of chained prediction models but also provides a foundation for future innovations in 

vehicular network security. 

. 
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